SOLUTIONS (Week 10)

1) $\frac{9}{35}$

- **2)** Sample space is the set of all possible choices of 3 cells out of 64 cells. Thus, size of the sample space is C(64,3). In $C(8,3) \cdot P(8,3)$ different ways 6 checkers can be located such that no row or no column contains more than one checker. Then, the required probability is $\frac{C(8,3) \cdot P(8,3)}{C(64,3)} \approx 0.4516$.
- 3) Available odd numbers greater than 8 are 9 and 11. We can have the sum 9 with probability 4/36 and the sum with probability 2/36. Since the events of having a sum of 9 and 11 are disjoint, the probability of having an odd sum greater than 8 is 1/6.
- **4)** Size of the sample space is *C*(52,3) which consists of all possible choices of three cards out of 52 cards. We can have three cards none of which is a club in *C*(39,3) different ways. Then, the probability of having at least on clubs is $1 \frac{C(39,3)}{C(53,3)} = 0.4135$.
- **5)** $\frac{3}{6} \cdot \frac{2}{6} = \frac{1}{6}$.
- 6) We have to consider two events:

The first card is a face card of diamonds and the second card is a clubs.

The first card is a face card of clubs and the second card is another clubs.

Probabilities of these events are $\frac{3}{52} \cdot \frac{13}{51} = \frac{39}{2652}$ and $\frac{3}{52} \cdot \frac{12}{51} = \frac{36}{2652}$, respectively. Then the answer is $\frac{75}{2652} = 0.02828 \cdots$.

- **7)** The product is a prime only when one die is a 1 and the other is a 2, 3 or 5. Then the probability is $\frac{6}{36} = \frac{1}{6}$.
- 8) $\frac{1}{6}$
- **9)** $1 \frac{49}{56} \cdot \frac{48}{55} = \frac{13}{55}$.
- **10)** $\frac{16}{52}$ / $1 \frac{36}{52} \cdot \frac{35}{51} = \frac{116}{221} = 0.52488 \cdots$.
- **11)** $\frac{21!}{26!} = 0.0000001267 \cdots$.
- **12)** Pr(No Ace) = C(48,5)/C(52,5)Pr(No K/Q) = C(44,5)/C(52,5)Pr(No Ace and No K/Q) = C(40,5)/C(52,5)Then by principle of inclusion-exclusion the probability we are asked is $1 - \frac{C(48,5)+C(44,5)-C(40,5)}{C(52,5)} = 0.1764 \cdots$.
- **13)** Sample space consists of all possible orderings of picked fruits (such as aaaooaaoaoo), hence the size of sample space is *C*(12,5). The last one is an apple in *C*(11,5) orderings. Hence the probability we are asked is $\frac{C(11,5)}{C(12,5)} = 0.5833 \cdots$.

Alternative solution: The last fruit is an apple with probability $\frac{5}{12}$.

14) a) Five people can choose the floors they exit in 10^5 different ways. In *P*(10,5) of these ways, choices are all distinct. The probability they all choose different floors is then $\frac{P(10,5)}{10^5} = 0.3024$.

Alternative solution: Each floor is chosen with probability 10^{-1} , then five distinct floors (in a specific order) can be chosen in 10^{-5} ways. Number of choices is C(10,5) and number of orderings is 5!. Then the probability that each one chooses a different floor is $10^{-5} \cdot C(10,5) \cdot 5! = 0,3024$.

b) Floor 10 is chosen with probability 2^{-1} and each other floor is chosen with probability 18^{-1} ,

- -If no one chooses 10^{th} floor, the probability that each one chooses a different floor is $18^{-5} \cdot C(9,5) \cdot 5!$,
- -If one chooses 10^{th} floor, they choose different floors with the probability $2^{-1} \cdot 18^{-4} \cdot C(9,4) \cdot 5!$.

Then, the required probability is

$$2^{-5}9^{-4}5! (9^{-1}C(9,5) + C(9,4)) = 18^{-5} \cdot 5! \cdot 10 \cdot C(9,5) = \frac{525}{6561} = 0.0800 \cdots$$

- 15) We consider all possible cases:
 - All the balls go to a unique box with probability 1/9, (a ball is thrown to any of the boxes, and then each of the others go to the same box with probability 1/3),
 - one ball goes to each box (with probability 2/9),
 - two balls go to a box, a ball goes to another box and a box is left empty (with probability 6/9),

16)
$$\frac{4}{15}$$

17)
$$\frac{8!3!}{10!} = \frac{1}{15}$$
.

$$D_n = 1$$

- **18)** $\frac{\nu_n}{n!} \approx \frac{1}{e}$
- **19)** Denote the people by A_1 , A_2 , B_1 , B_2 , C_1 , C_2 , D_1 , D_2 , E_1 , E_2 , F_1 , F_2 and define the events

 $A: A_1$ and A_2 are in the same team,

- $B: B_1$ and B are in the same team,
- $C: C_1$ and C_2 are in the same team,
- $D: D_1$ and D_2 are in the same team,
- $E: E_1$ and E_2 are in the same team,

 $F: F_1 and F_2$ are in the same team.

Then, the probability that none of the teams has a married couple is given by $p = \Pr(\overline{A} \cap \overline{B} \cap \overline{C} \cap \overline{D} \cap \overline{E} \cap \overline{F})$.

Now we compute the necessary probabilities:

$$Pr(A) = \frac{1}{4}$$

$$Pr(A \cap B) = \frac{3}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} = \frac{3}{64}$$

$$Pr(A \cap B \cap C) = \frac{3}{4} \cdot \frac{2}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} = \frac{3}{512}$$

$$Pr(A \cap B \cap C \cap D) = \frac{3}{4} \cdot \frac{2}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} = \frac{3}{2048}$$
Thus hence is is a finite lation and size

Then by principle of inclusion-exclusion:

$$p = 1 - {6 \choose 1} \frac{1}{4} + {6 \choose 2} \frac{3}{64} - {6 \choose 3} \frac{3}{512} + {6 \choose 4} \frac{3}{2048}$$
$$= \frac{221}{2048} = 0.1079 \cdots.$$

0)
$$\frac{10}{35}$$

1) $\frac{8}{35}$

22)
$$\frac{1}{10}$$

23) $\frac{1}{15}$ (compare to problem 17.)

24)
$$\frac{C(5,2)}{\frac{1}{2}C(10,5)} = \frac{10}{126} = 0.0793 \cdots$$

25) A function from the set of students to the set {1,2,3,4} is defined and we are asked to find the probability that the function is not onto. The number of onto functions is given by

$$A = \sum_{k=0}^{4} (-1)^k \binom{4}{k} (4-k)^{10} = 818520.$$

The required probability is $1 - \frac{818520}{4^{10}} = 0.2193 \cdots$.

- **26)** There are $\frac{8!}{2!^4 4!} = 105$ ways to determine the pairs. If **29)** two fixed English teams are to be matched, matching the remaining teams can be completed in $\frac{6!}{2!^3 3!} = 15$ ways. Thus, in 45 different pairings, two English teams are in the same pair. Then, probability that no two English teams are matched is $1 \frac{45}{105} = \frac{4}{7}$.
- **27)** Let the pair (w, b) denote the number of white and black balls. From the situation we can pass to (w 1, b + 1) with probability $\frac{w}{5}$ or (w + 1, b 1) with probability $\frac{b}{5}$. Starting from (3,2), the situation (0,5) can be achieved in at most 5 steps in one of the following four ways:

$$\begin{array}{c} (3,2) \xrightarrow{3/5} (2,3) \xrightarrow{2/5} (1,4) \xrightarrow{1/5} (0,5) \\ (3,2) \xrightarrow{2/5} (4,2) \xrightarrow{4/5} (3,2) \xrightarrow{3/5} (2,3) \xrightarrow{2/5} (1,4) \xrightarrow{1/5} (0,5) \\ (3,2) \xrightarrow{3/5} (2,3) \xrightarrow{3/5} (3,2) \xrightarrow{3/5} (2,3) \xrightarrow{2/5} (1,4) \xrightarrow{1/5} (0,5) \\ (3,2) \xrightarrow{3/5} (2,3) \xrightarrow{2/5} (1,4) \xrightarrow{4/5} (2,3) \xrightarrow{2/5} (1,4) \xrightarrow{1/5} (0,5) \\ \end{array}$$

 $(3,2) \xrightarrow{7.5} (2,3) \xrightarrow{2/5} (1,4) \xrightarrow{4/5} (2,3) \xrightarrow{2/5} (1,4) \xrightarrow{1/5} (0,5)$ Then the probability we are trying to compute is $\frac{6}{125} + \frac{48+54+48}{3125} = \frac{12}{125} = 0,096.$

28) First student cannot be the winner. Second one wins with the probability $\frac{9}{9} \cdot \frac{1}{9}$, third one has the probability $\frac{9}{9} \cdot \frac{8}{9} \cdot \frac{2}{9}$ to win, fourth one wins with the probability $\frac{9}{9} \cdot \frac{8}{9} \cdot \frac{7}{9} \cdot \frac{3}{9}$,.... In general, *k*-th one wins with the probability $\frac{P(9,k-1)\cdot(k-1)}{9^k}$.

Computed values are as follows:

No	Probability to win
1	0,00000
2	0,11111
3	0,19753
4	0,23045
5	0,20485
6	0,14225
7	0,07587
8	0,02950
9	0,00749
10	0,00094

Fourth student has the largest probability to win the bonus.

b) 2 black and 7 white cards can be arranged in $\frac{9!}{2!7!}$ = 36 different ways. For the first player to win, the possible orderings are

B [BWWWWWW]: 8 orderings

WWWB [BWWWW]: 5 orderings

WWWWWB [BW]: 2 orderings

Winning orderings for the second are:

WB [BWWWWWW]: 7 orderings

WWWWB [BWWW]: 4 orderings

WWWWWWB [B]: 1 ordering

Then, the probability that the first player wins is 15/36. Second player is the winner with probability 11/36 and consequently third one is the winner with probability 10/36.

30) Let q = 1 - p and let *P* be the probability that Selim is the winner.

$$\begin{split} P &= p(p+qp^2+qpqp^2+qpqpqp^2+\cdots) \\ &+ q(p^2+pqp^2+pqpqp^2 \\ &+ pqpqpqp^2+\cdots) \\ &= (p^2+qp^3+q^2p^4+\cdots) \\ &+ q(p^2+qp^3+q^2p^4+\cdots) \\ &= (1+q)p^2(1+pq+p^2q^2+p^3q^3+\cdots) \\ &= \frac{(1+q)p^2}{1-pq} \\ &= \frac{(2-p)p^2}{1-p+p^2}. \end{split}$$