SOLUTIONS (Week 11)
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There are 3 correct and 7 fake keys in the box. One can
pick two correct and one fake key in (3)(]) =21
possible ways. Choosing 3 correct keys is possible only
in 1 way. Thus, there are 22 possible choices which
enable us to open the door. Since the number of all

possible choices is (%) = 120, probability of opening
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the door is 2~ .
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First solution. Assume that the boy stops at the X th try.
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Second solution. The probability of drawing a white

k
ball in each of the first k tries is (g) . Consequently, to

k
have a black ball in one of the first k triesis 1 — (g) .
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try. We have
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Second solution. The probability of drawing a white ball

in each of the first k tries is 2-3.3. L 2
3 4 4 k+2 _k+2
Consequently, to have a white ball in one of the first k

tries is 1 — —— = ——
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Let x be the probability of having heads in a single
flipping. When the coin is flipped 6 times the
probability of 3 heads and 3 tails is P(x) =
(g)x3(1 —x)3. We have P'(x) = 60x%(1 —x%)(1 —
2x). It follows that P attains its maximum value for
x = 1/2 and this maximum value is P G) = 0.3125.

We conclude that, the probability of having 3 heads
and 3 tails can never exceed 0.3125.

Let P(n, k) denote the probability of having exactly
k heads when the coin is flipped n times. Then

P(42) = (g)xm — %)% = 6x2(1 — x)? = 0.24
From which we get x(1 — x) = 0.2 and
P(63) = (:) ¥3(1 - 2)% = 20x3(1 — x)°
=20[x(1 - x)]> = 0.16.

P(10,5) = () - 271 = 0.2460 - and

P(20,10) = (33) - 2720 = 0.1761 ---.



