METU DEPARTMENT OF MATHEMATICS

Math 112 Discrete Mathematics

Exercises 7

- 1) The sequence $\{a_n\}$ is defined by $a_n = a_{n-1} + n \cdot n!$ for $n \ge 1$. If $a_0 = 0$, find a_{112} . [Hint. Simplify (n + 1)! - n!.]
- 2) The sequence $\{a_n\}$ is defined by $a_{n+3} = a_{n+2} \cdot a_n a_{n+1}$ for $n \ge 0$ and $a_0 = 1$, $a_1 = 2$ and $a_2 = 4$. Find a_{112} .

[Hint. Compute first ten terms.]

- 3) A sequence $\{a_n\}$ is defined by $a_{n+2} = a_{n+1} + na_n$ for $n \ge 0$. If $a_0 = 0$ and $a_7 = 38$, find a_5 .
- **4)** Given the recurrence relation $a_{n+3} = 6a_{n+2} 11a_{n+1} + 6a_n$. Show that each of the following sequences satisfy this relation.
 - a) 1, 1, 1, 1, ...
 - b) 2, 2, 2, 2, ...
 - c) 1, 2, 4, 8, ..., 2^n , ...
 - d) 1,3,9,27, ..., 3ⁿ, ...
 - e) 7,14,34,92, ..., $2^n + 3^{n+1} + 3$, ...
- **5)** Find (other than the ones mentioned in the previous question) a sequence which satisfies the recurrence relation $a_{n+3} = 6a_{n+2} 11a_{n+1} + 6a_n$.
- 6) Show that the sequence $1, 3, 9, 27, ..., 3^n$, ... satisfies all of the following recurrence relations.

a)
$$a_n = 3a_{n-1}$$
,

- b) $a_n = 5a_{n-1} 6a_{n-2}$,
- c) $a_n = 4a_{n-1} 3a_{n-2}$,
- d) $a_n = a_{n-1} + 6a_{n-2}$,
- e) $a_n = -a_{n-1} + 9a_{n-2} + 9a_{n-3}$,
- f) $a_n = 2a_{n-1} + 5a_{n-2} 6a_{n-3}$.
- **7)** Find (other than the ones mentioned in the previous question) a second order recurrence relation which is satisfied by the sequence $1, 3, 9, 27, ..., 3^n, ...$
- 8) In each of the following, show that the given sequence satisfies the corresponding recurrence relation

a)	1, 2, 3, , <i>n</i> ,	$a_n = a_{n-1} + 1$	$n \ge 1$
b)	1, 2, 3, , <i>n</i> ,	$a_n = 2a_{n-1} - a_{n-2}$	$n \ge 2$
c)	$0, 1, 3, 7, \dots, 2^n - 1, \dots$	$a_n = 3a_{n-1} - 2a_{n-2}$	$n \ge 2$
d)	$1, 3, 5, 7, \dots, 2n - 1, \dots$	$a_n = 3a_{n-1} - 3a_{n-2} + a_{n-3}$	$n \ge 3$
e)	2, 4, 6, 8, ,2 <i>n</i> ,	$a_n = 3a_{n-1} - 3a_{n-2} + a_{n-3}$	$n \ge 3$
f)	3,6,9,12, ,3 <i>n</i> ,	$a_n = 3a_{n-1} - 3a_{n-2} + a_{n-3}$	$n \ge 3$
g)	$0, 1, 4, 9, \dots, n^2, \dots$	$a_n = 3a_{n-1} - 3a_{n-2} + a_{n-3}$	$n \ge 3$

- 9) Find the general solutions of the following recursions
 - a) $a_{n+3} = 8a_{n+2} 19a_{n+1} + 12a_n$,
 - b) $a_{n+3} = 11a_{n+2} 32a_{n+1} + 28a_n$,
 - c) $a_{n+3} = 6a_{n+2} 12a_{n+1} + 8a_n$,

- d) $a_{n+3} = 4a_{n+2} 6a_{n+1} + 4a_n$.
- 10) Find the general term of the sequence $\{a_n\}$ if $a_0 = 1$, $a_1 = 2$, $a_2 = 3$ and for $n \ge 3$
 - a) $a_n = 7a_{n-2} 6a_{n-3}$, b) $a_n = 7a_{n-1} - 16a_{n-2} + 12a_{n-3}$, c) $a_n = 9a_{n-1} - 27a_{n-2} + 27a_{n-3}$.
- 11) In each of the following, a sequence $\{a_n\}$ is defined recursively. Find an equivalent homogeneous recursive relation and provide sufficient initial conditions to define the same sequence
 - a) $a_0 = a_1 = 1$ and $a_n = a_{n-1} + a_{n-2} + 1$ for $n \ge 2$,
 - b) $a_0 = 1$, $a_1 = 1$ and $a_n = 2a_{n-1} a_{n-2} + n$ for $n \ge 2$,
 - c) $a_0 = 2$, $a_1 = 1$ and $a_n = 3a_{n-1} a_{n-2} + n^2 + 3$ for $n \ge 2$,
 - d) $a_0 = 2$, $a_1 = 7$ and $a_n = 2a_{n-1} a_{n-2} + n$ for $n \ge 2$, e) $a_0 = 3$, $a_1 = 4$ and $a_n = 2a_{n-1} a_{n-2} + 7^n$ for $n \ge 2$,

 - f) $a_0 = 1$, a = 1 and $a_n = a_{n-1} 3a_{n-2} + 3^n n^2$ for $n \ge 2$, g) $a_0 = 1$, a = 1 and $a_n = 2a_{n-1} + 4a_{n-2} + n2^n$ for $n \ge 2$.
- If the sequence a_0, a_1, a_2, a_3 ... satisfies the relation $u_{n+2} = \alpha u_{n+1} + \beta u_n$, show that the 12) sequence $a_0, a_2, a_4, a_6, \dots$ satisfies the relation $v_{n+2} = (2\beta + \alpha^2)v_{n+1} - \beta^2 v_n$.
- If the linear complexities of the sequences $\{a_n\}$ and $\{b_n\}$ are 2, show that the linear complexity 13) of the sequence $\{a_n b_n\}$ is at most 4.

[Note. Linear complexity of a sequence is order of the smallest order constant coefficient linear homogeneous recursive relation satisfied by the sequence.]

- 14) It is given that the sequences $\{a_n\}$ and $\{b_n\}$ both satisfy the same constant coefficient linear homogeneous recursive relation of order 5. If $b_n = 3 \cdot 2^{n+1} + i^n + 1$ for any nonnegative integer n and $a_0 = 0$, $a_1 = 1$, $a_2 = 3$, $a_3 = 5$, $a_4 = 7$, find a_5 .
- If the sequences $\{a_n\}$ and $\{b_n\}$ satisfy the relations 15)

$$a_n = \alpha a_{n-1} + \beta b_{n-1}$$
$$b_n = \gamma a_{n-1} + \delta b_{n-1}$$

show that they both satisfy the relation

$$u_n = (\alpha + \delta)u_{n-1} + (\gamma\beta - \alpha\delta)u_{n-2}$$

Let the sequence $\{a_n\}$ be defined by the relation $a_{n+2} = \alpha a_{n+1} + \beta a_n$. Find a constant 16) coefficient linear homogeneous recursive relation which is satisfied by the sequence of partial sums $\{S_n\}$.

[Note. $S_n = a_0 + a_1 + \dots + a_n$.]